Notes

Planck functions: - planck: planck radiation with wavelength input - planck_wn: planck radiation with wavenumber input - sPlanck: a RADIS Spectrum blackbody object

Example

Generate Earth blackbody:

s = sPlanck(wavelength_min=3000, wavelength_max=50000,
T=288, eps=1)
s.plot()


planck(lmbda, T, eps=1, unit='mW/cm2/sr/nm')[source]Â¶

$\epsilon \frac{2h c^2}{{\lambda}^5} \frac{1}{\operatorname{exp}\left(\frac{h c}{\lambda k T}\right)-1}$
Parameters
• Î» (np.array (nm)) â€“ wavelength

• T (float (K)) â€“ equilibrium temperature

• eps (grey-body emissivity) â€“ default 1

• unit (output unit) â€“ default â€˜mW/sr/cm2/nmâ€™

Returns

Return type

(mW.sr-1.cm-2/nm)

sPlanck(), planck_wn()

planck_wn(wavenum, T, eps=1, unit='mW/cm2/sr/cm-1')[source]Â¶

Planck function for blackbody radiation, wavenumber version.

$\epsilon 2h c^2 {\nu}^3 \frac{1}{\operatorname{exp}\left(\frac{h c \nu}{k T}\right)-1}$
Parameters
• wavenum (np.array (cm-1)) â€“ wavenumber

• T (float (K)) â€“ equilibrium temperature

• eps (grey-body emissivity) â€“ default 1

• unit (str) â€“ output unit. Default â€˜mW/sr/cm2/cm-1â€™

Returns

Return type

default (mW/sr/cm2/cm-1)

sPlanck(), planck()

sPlanck(wavenum_min=None, wavenum_max=None, wavelength_min=None, wavelength_max=None, T=None, eps=1, wstep=0.01, medium='air', **kwargs)[source]Â¶

Return a RADIS Spectrum object with blackbody radiation.

Itâ€™s easier to plug in a SerialSlabs() line-of-sight than the Planck radiance calculated by planck(). And you donâ€™t need to worry about units as they are handled internally.

See Spectrum documentation for more information

Parameters
• wavenum_min / wavenum_max (():math:cm^{-1})) â€“ minimum / maximum wavenumber to be processed in $$cm^{-1}$$.

• wavelength_min / wavelength_max (($$nm$$)) â€“ minimum / maximum wavelength to be processed in $$nm$$.

• T (float (K)) â€“ blackbody temperature

• eps (float [0-1]) â€“ blackbody emissivity. Default 1

Other Parameters
• wstep (float (cm-1 or nm)) â€“ wavespace step for calculation

• **kwargs (other keyword inputs) â€“ all are forwarded to spectrum conditions. For instance you can add a â€˜path_length=1â€™ after all the other arguments

Examples

Generate Earth blackbody:

s = sPlanck(wavelength_min=3000, wavelength_max=50000,
T=288, eps=1)
s.plot()


Examples using sPlanck :

References

In wavelength:

$\epsilon \frac{2h c^2}{{\lambda}^5} \frac{1}{\operatorname{exp}\left(\frac{h c}{\lambda k T}\right)-1}$

In wavenumber:

$\epsilon 2h c^2 {\nu}^3 \frac{1}{\operatorname{exp}\left(\frac{h c \nu}{k T}\right)-1}$