RADIS Documentation
Release 0.13.1

Erwan Pannier, Dirk van den Bekerom, Nicolas Minesi, et al. (http:

Aug 28, 2022

CONTENTS

1 Getting Started 3
L1 Install . . .o e e e e 3
1.2 Quick Start L e e e e e e e e e 3
1.3 Moreexamples oo e e e e e e e e e 4
1.4 Inthe browser (no installation needed!) e 5
LS Gite . . . o o e e 6

2 Content 7
2.1 Features v v vt e e e e e e e e e e 7

2,11 Descriptiono e e e e e e e e e e e e e e e e 7
2.1.2 0 Features v i e e e e e e e e e e e e e e e e 8
Use Cases . . v v v v v i e e e e e e e e e e e e 8

2.1.3 Line Databases e e e e e e e 9
2.1.4 Interfaces e e e 9
Thermodynamic codes o i i e e e e e e e 9

2.1.5 Newfeatures o o i e e e e e e e e 9
2.2 Line-by-linemodule e 9
2.2.1 Linedatabases e e e e e e e e e e e e 10
HITRAN . . e e 10
HITEMP . . . e 10
CDSD-4000 o e 11

222 Calculating spectrao e e e e 11
Calculate one molecule spectrum e e e e 11
Calculate multiple molecules spectrum oL 11
Equilibrium Conditions e e e e e 13
Nonequilibrium Calculations e e 14
FitaSpectrum e e e e 14
Calculating spectrum using GPU oL oL 14

223 Underthehood e 14
Flow Chart e e e e e 14

The Spectrum Factory e e e e e 15
Configuration file L L e e e 15

224 Advanced L e e e e 20
Calculation Flow Chart e 20

Use Custom Spectroscopic CONStantS v v v v v v v e e e e e e e e e 20
Vibrational bands L e 20
Connect to a Spectrum Database L e e 20

225 Performance e e e e e e 20
Line Database Reduction Strategies o e 21
Lineshape optimizations L e 21

Computation parameters v v vt e e e e e e e e e e e e e e e e e e 21

Choose the right wavenumber grid e 22
Sparse wavenumber grid L. Lo 22
Database loading e 22
Manipulate the database e 23
Tabulated Partition Functions L 23
Profiler 23
Predict Time e 24
Precompute Spectra L. e e e 25

2.3 The Spectrumobject L e 25
2.3.1 Howto generate a Spectrum?t e e e e e e e e 26
Calculate a Spectrum o o i e e e e e e e e e e e e e e 26
Initialize from Pythonarrays 26
Initialize from Specutils oL 27
Initialize fromatextfile 27

Load froma.specfile. e 27

Load fromaHDF5file 28
Calculate atest SPECIIUM v v v v v i e e e e e e e e e e e e e e e e e e 28
Generate a Blackbody (Planck) functionobject, 28

232 Spectral ATraySo e e e e e e 29
Custom spectral arrayso e 29
Relations between quantities Lo e 30

Units o 30

2.3.3 How to access Spectrum properties? e e e e e e e e e 30
Getspectral arraysl e e e e e 30

Get wavelength/wavenumbero 0oL 31

Print Spectrum conditions Lo 31

Plot spectral arrays o v i e e e e e e e e e e e e e e e 31

Plot populations e e e e e e e e 31
Plotline survey L e e e e e 31

Know ifaspectrumhasnan o 32

234 HOWtOEXPOrt? o ottt e e e e e e e 32
Save a Spectrumobject L L.l e e e 32
ExporttohdfS e e e e 33
EXport totXt o e e e e e e e e e e 33
ExporttoPandas e 33
Exportto Specutils e 33

2.3.5 How to modify a Spectrum object? 33
Calculate missing quantities o v i e e e e e e e e e e e e 33
Update Spectrum conditions L. e e e e 34
Rescale Spectrum withnew pathlength 34
Rescale Spectrum with new mole fraction L. 34

Apply instrumental slit functiono oL 34

Plot the slit function that was applied 35
Multiply, subtract e e e e e e e 35
Offset, crop o o o o e e e e e e e e 35
Normalize o e e e e e e e 36
Chaining e e 36
Remove abaseline e 36
Calculate transmittance from radiance with Kirchoff’slaw 37

2.3.6 How to handle multiple Spectra? e 37
Build a line-of-sightprofile L o 37
Compare tWo SPectra e e 37
Plotinlogscale L e e 38

24

2.5

2.6

Fitan experimental spectrum L. oo 38

Interpolate a Spectrum on another L e e e 39
Create a database of Spectrumobjects e 39
237 Spectrum Database e 39
Iterate over all Spectrainadatabase L L. 40
Filter spectra that match certain conditions, 40
Fit an experimental spectrum against precomputed spectra 40
Updating adatabase e e e 41
WhennottouseaDatabase L 41
Line-of-sight module e 41
24.1 Howtocombineslabs? 41
Along the line-of-sight 41
Atthe same spatial position L. e e e e 41
242 Practical Examples e 42
Build alarge spectrum L L L e e e e 42
Get the contribution of each slab alongthe LOS 42
Examples L e e 42
251 LN SUIVEY v e e e e e e e e e e e 43
2.5.2 RADISin-the-browser L e 43
2.5.3 Getrovibrational energies L. oL e 43
2.5.4 Calculate Partition Functions o 44
2.5.5 Multi Temperature Fit oL 44
2.5.6 CH4 Full Spectrum Benchmark 45
2.5.7 Compute Blackbody Radiation Spectrum 46
Example gallery o L e e e e 46
2.6.1 Calculate Rovibrational Energies 47
2.6.2 SlitFunction 47
2.6.3 Partition Functions from TIPS 48
See AISO . . . e e 48
2.64 Download the HITEMP database 48
2.6.5 Citeallreferencesused L e 50
Example L e e 50
See AISO . . . e e 50
2.6.6 Load an experimental Spectrumo i e e e e e e e e e e 50
2.6.7 LN SUIVEY o o i e e e e e e e e e e e e e e e e 52
2.6.8 Blackbody radiation. L e 107
2.6.9 Partition Functions from spectroscopic constantso 109
See AISO . . . e e 109
2.6.10 Removeabaseline 109
2.6.11 Explore Line Database Parameters e 111
2.6.12 GPU Accelerated Spectra e e 113
2.6.13 Calculate non-LTE spectra of carbon-monoxide 117
2.6.14 Usedifferentplotthemes e 121
Examples o . e e 121
See AISO . . . e 121
2.6.15 Calculate a large spectrum by parto e e e e e e 128
2.6.16 Compare CO spectrum from the GEISA and HITRAN database 131
2.6.17 Get Molecular Parameters 134
2.6.18 Calculate a spectrum from HITEMP 135
2.6.19 Use Custom Abundances e 138
See AISO . . . L e 139
2.6.20 Calculate a spectrum from ExoMol L o 141
2.6.21 Real-time GPU Accelerated Spectra (Interactive) 145
2.6.22 See populations of computed levels oL L Lo 148

2.7

2.6.23 Calculate a full tTange SPECLIUmM v v v v et e e e e e e e e e e e e 153
2.6.24 Spectrum Database L e e e e e e e e e e 154
2.6.25 Compare CO xsections from the ExoMol and HITEMP database 160
2.6.26 Post-process using Specutilso oL 164
2.6.27 Multi-temperature Fit 0oL 169
2.6.28 ltemperature fit. L. e e e e e e e e 182
2.6.29 Scale Linestrengths of carbon-monoxide 188

References e 188
HITRAN Spectra o o o it e 190
271 1.H20 .o 192
272 2.CO2 . 192
273 4. N20 .. 194
274 5.CO . . e 195
275 6. CHA . . o e 196
276 8.NO . . 197
277 9.SO2. . 198
27.8 10.NO2 . . . o 199
279 11.NH3 . .o e 200
27.10 12.HNO3 © L e e 201
2701 13.0H .. e e e 202
2712 T4.HF . . oo e 203
2703 IS5 HCL © oo 204
27.14 16.HBr oL 205
2705 T7.HL © oo e e e 206
27.16 18.CIO o e 207
2707 19.0CS .« . o e e 208
2718 20.H2CO e 209
2.7.19 21.HOCIL . . oo e e e 210
2720 22 N2 . L e e e 211
2721 23.HCN .. e 211
27722 24.CHACL . . . e e e 211
27723 25.H202 . . . e e 212
2724 26. C2H2 L e e 213
2725 27.C2HO . . . oo e e 214
2726 28.PH3 . . . e e e 215
2727 29.COF2 . . . e e e 216
27728 30.SFO . . e 217
27729 31.H2S © o 217
27730 32.HCOOH. e e 218
2731 33.HO2 . . . e e 219
27732 35.CIONO2 e 220
2733 36.NO+ . . e e 220
2734 37.HOBro 221
27735 38.C2H4A . . o o 221
2736 39.CH3OH e 221
2737 40.CH3Br e e 222
27738 41.CH3CN . . . e e e 222
27739 42.CF4 . . o 222
2740 43.CAH2 . . . oL e 222
2741 44 HC3N . . o e e 222
2742 AS.H2 . . oL e e e 222
2743 46.CS . . e e e e 222
2744 A7.S03 . e 222
27745 A8 C2N2 . . e 223

2.8

29

2.10

2.11

2746 49.COCI2 e
Try Online o o e e e e e e e e e e e e
2.8.1 radiS-app e e e e e e e e e
2.8.2 RADIS-lab e
Developer Guide o e e e
2.9.1 Contribute e e e e e e e e e e e e e e e
292 SOUICES .« v v v vt e e e e e e

Install e

Update your changes i e e e e e e e e
Code linting e e
Update o e e e e e e e e
Help o e e e e
2.9.3 Architecture e e e e e e e e e e e e e e e e
294 Test . .. e e e e e e e
Teststatus e e e e e e e e e e e e e
Code CoVerage v v i e e e e e e e e e e e e e
Performance benchmarks
Select testS e e e e e e e e e e e e e e e e e e
WIite neW teStS o e e e e e e e e e e e e e e e e e e
Testfiles e
Reporterrors o e e e e
Debugging e e e e e e e
References L e e e e
2.10.1 Spectroscopic conStants L L e e e e e e
CO2 . . e
CO . e
2.10.2 References. o e e e e e e e e e e
Bibliography e e e e e e
Line Databases i e e e e e e e e e e

2104 Cite . . . o o e e e e e e e e
2.10.5 Research Work e e e e e e
2.10.6 Conferences o v i i e
2.10.7 Spectroscopy Tutorials L e
2.10.8 Useful Links e e e e e e

2.11.2 radis.do e e e e e e e e e e e e e e e e
2.11.3 radis.Ibl . . .o e e e e e e e e e e
2.11.4 radisldevels L e e e e e e
2.11.5 radis.dos e e e e e
2.11.6 radiS.miSC e e e e e e e e e e e e e e e e e
2017 radis.phys o e e e e e e e e
2.11.8 radis.spectrum oL e e e e e e e e e
2.11.9 radis.tools L e e e e e e e

Bibliography

Python Module Index

Index

232

235

239

241

243

vi

RADIS Documentation, Release 0.13.1

RADIS is a fast line-by-line code for high resolution infrared molecular spectra (emission / absorption, equilibrium /
nonequilibrium).

It also includes post-processing tools to compare experimental spectra and spectra calculated with RADIS, or with
other spectral codes.

CONTENTS 1

RADIS Documentation, Release 0.13.1

2 CONTENTS

CHAPTER
ONE

GETTING STARTED

1.1 Install

Assuming you have Python installed with the Anaconda distribution just use:

pip install radis

That’s it! You can now run your first example below. If you encounter any problem or if you need to upgrade, please
refer to the detailed installation procedure. If you don’t have a Python environment, try RADIS Online first !

1.2 Quick Start

Calculate a CO equilibrium spectrum from the [HITRAN-2020] database, using the calc_spectrum() function.
Lines are downloaded automatically using Astroquery (based on [HAPI]). Output is a Spectrum object:

from radis import calc_spectrum

s = calc_spectrum(1900, 2300, # cm-1
molecule="C0O"',
isotope='1,2,3",
pressure=1.01325, # bar

Tgas=700, # K
mole_fraction=0.1,
path_length=1, # cm
databank="hitran', # or 'hitemp', 'geisa', 'exomol’
)
s.apply_slit(®.5, 'nm') # simulate an experimental slit

s.plot('radiance')

Calculate a CO nonequilibrium spectrum from the HITRAN database, with arbitrary units (on your first call, this will
compute and store the CO(X) rovibrational energies):

from astropy import units as u

s2 = calc_spectrum(1900 / u.cm, 2300 / u.cm,
molecule="'C0O"',
isotope='1,2,3",
pressure=1.01325 * u.bar,
Tvib=700 * u.K,
Trot=300 * u.K,
mole_fraction=0.1,

(continues on next page)

https://www.anaconda.com/download/
https://docs.astropy.org/en/stable/units/index.html#module-astropy.units

RADIS Documentation, Release 0.13.1

0.030 1

0.025

0.020 1

0.015 1

0.010

Radiance (mW/cm?/st/nm)

0.005

0,000- USRI WMMM

T T T T T T T T T T T T T T T T T
1900 1950 2000 2050 2100 2150 2200 2250 2300

Wavenumber (cm™ 1)

(continued from previous page)

path_length=1 * u.cm,

databank="hitran', # or 'hitemp', 'geisa', 'exomol’
)

s2.apply_slit(0.5, 'nm")

s2.plot('radiance', nfig="same") # compare with previous

Experimental spectra can be loaded using the experimental_spectrum() function and compared with the
plot_diff() function. For instance:

from numpy import loadtxt

from radis import experimental_spectrum, plot_diff

w, I = loadtxt('my_file.txt"').T # assuming 2 columns

sexp = experimental_spectrum(w, I, Iunit='mW/cm2/sr/nm')

plot_diff(sexp, s) # comparing with a spectrum 's' calculated previously

Refer to the Spectrum object guide for more post-processing functions (rescale , crop, remove baselines, store, combine
along the line-of-sight, identify each line, manipulate multiple spectra at once, etc.)

1.3 More examples

* Load an experimental spectrum

* Line Survey

* Blackbody radiation

* Remove a baseline

e GPU Accelerated Spectra

* Calculate non-LTE spectra of carbon-monoxide

* Use different plot themes

4 Chapter 1. Getting Started

RADIS Documentation, Release 0.13.1

* Calculate a large spectrum by part

e Compare CO spectrum from the GEISA and HITRAN database
* Calculate a spectrum from HITEMP

* Calculate a spectrum from ExoMol

* Real-time GPU Accelerated Spectra (Interactive)

* See populations of computed levels

* Spectrum Database

e Compare CO xsections from the ExoMol and HITEMP database
* Post-process using Specutils

* Multi-temperature Fit

* [temperature fit

The Quick Start examples automatically downloaded the line databases from [HITRAN-2020], which is valid for tem-
peratures below 700 K. For high temperature cases, you may need to use other line databases such as [HITEMP-2010]
(typically T < 2000 K) or [CDSD-4000] (T < 5000 K). These databases must be described in a ~/radis. json Con-
figuration file.

Note: starting from radis==0.9.30 you can also download HITEMP and ExoMol directly. Just use
databank="hitemp' or databank="'exomol"' in the initial example. This will automatically download, unzip and
setup the database files in a ~/.radisdb folder.

More complex examples will require to use the SpectrumFactory class, which is the core of RADIS line-by-line
calculations.

Refer to the Examples and Example Gallery sections for more examples, and to the User Documentation for more
details on the code. You can also ask questions on the Q&A Forum or on the community chats on Gitter or Slack

1.4 In the browser (no installation needed!)

Alternatively, you can also run RADIS directly in the browser with the RADIS Interactive Examples project. For
instance, run the Quick Start example on the link below:

Or use RADIS-lab to start a full online environment for advanced spectrum processing and comparison with experi-
mental data :

1.4. In the browser (no installation needed!) 5

https://joblib.readthedocs.io/en/latest/auto_examples/index.html#sphx-glr-auto-examples
https://groups.google.com/forum/#!forum/radis-radiation
https://gitter.im/radis-radiation/community
https://radis.github.io/slack-invite/
https://github.com/radis/radis-examples#interactive-examples
https://mybinder.org/v2/gh/radis/radis-examples/master?filepath=first_example.ipynb
https://mybinder.org/v2/gh/radis/radis-lab/main?urlpath=lab/tree/compare_with_experiment.ipynb

RADIS Documentation, Release 0.13.1

1.5 Cite

RADIS is built on the shoulders of many state-of-the-art packages and databases. If using RADIS to compute spectra,
make sure you cite all of them, for proper reproducibility and acknowledgement of the work ! See How to cite?

6 Chapter 1. Getting Started

CHAPTER
TWO

CONTENT

e The Line-by-line (LBL) module

This is the core of RADIS: it calculates the spectral densities for a homogeneous slab of gas, and returns a
Spectrum object. Calculations are performed within the SpectrumFactory class. calc_spectrum() is a
high-level wrapper to SpectrumFactory for most simple cases.

* Line-of-sight (LOS) module

This module takes several Spectrum objects as input and combines then along the line-of-sight
(SerialSlabs()) or at the same spatial position (MergeSlabs()), to reproduce line-of-sight experiments. The
module allows combination of Spectra such as:

s_line_of_sight = (s_plasma_C02 // s_plasma_CO) > (s_room_absorption)

* The Spectrum object guide

This module contains the Spectrum object itself, with several methods that can be applied after the Spectrum
was calculated: rescale, apply instrumental slit function, store or retrieve from a Spectrum database, plot or
compare with another Spectrum object.

¢ modindex

2.1 Features

2.1.1 Description

Written as a general purpose radiative solver, the code is built around the [HITRAN-2020], [HITEMP-2010] and
[CDSD-4000] databases for molecules in their electronic ground state. Energy levels are read from tabulated databases
or calculated from Dunham developments. Boltzmann, Treanor, and state specific vibrational distributions can be gener-
ated. Thus far, CO,, CO are featured for non-equilibrium calculations (MOLECULES_LIST_NONEQUILIBRIUM), and all
species present in the HITRAN database are featured for equilibrium calculations (MOLECULES_LIST_EQUILIBRIUNM).

To fit experimental spectra, RADIS includes a LineSurvey tool, an interface with alook-up SpecDatabase to improve
fitting convergence times, and a multi-slab module with a radiative transfer equation solver to reproduce line-of-sight
experiments. Validation cases against existing spectral codes and experimental results from various plasma sources
are included [RADIS-2018].

RADIS Documentation, Release 0.13.1

2.1.2 Features

RADIS is both an infrared /ine-by-line code and a post-processing library. It includes:

* Absorption and emission spectra of all [HITRAN-2020] and [ExoMol-2020] species under equilibrium calcula-
tions (MOLECULES_LIST_EQUILIBRIUM)

e Absorption and emission spectra of CO2 and CO for non-LTE calculations (see
MOLECULES_LIST_NONEQUILIBRIUM)

* Different Line Databases: support of [HITRAN-2020], [HITEMP-2010], [CDSD-4000], [ExoMol-2020],
[GEISA-2020] line databases (see KNOWN_DBFORMAT)

 Calculation of Rovibrational Energies of molecules.
* Calculation of equilibrium and nonequilibrium Partition Functions.
 Spatially heterogeneous spectra (see see line-of-sight)
* Post-processing tools to load and compare with experimental spectra (see the Spectrum object)
* A Line Survey tool to identify which lines correspond to a spectral feature.
RADIS does not include, so far:
 Line-mixing effects and speed-dependant lineshapes. [HAPI] is a Python alternative that does it.
¢ Collisional-induced absorption (CIA) or emission.
* Electronic states other than electronic ground states
¢ Hamiltonian calculations (a private module for CO2 is available on request)
* Raman spectra (contribute in #43)
RADIS also features:

* High Performances: spectra are calculated up to several orders of magnitude faster than equivalent line-by-line
codes.

¢ In-the-browser calculations (no install needed) : see RADIS Online.
¢ Automatic download of the latest HITRAN and HITEMP databases with calc_spectrum()
* Automatic testing and continuous integration tools for a reliable Open-source Development.

Remarks and request for features can be done on GitHub , on the Q&A forum or on the Gitter community chat:

Use Cases

Use RADIS to:

* Quickly compare different line databases: Various line database formats are supported by RADIS, and can be
easily switched to be compared. See the list of supported line databases formats: KNOWN_DBFORMAT and refer to
the Configuration file on how to use them.

See the comparison of two CO2 spectra calculated with [HITEMP-2010] and [CDSD-4000] below:

» Use the RADIS post-processing methods with the calculation results of another spectral code. For instance,
pySpecair, the Python interface to SPECAIR, uses the RADIS Spectrum object for post-processing (see How fo
generate a Spectrum?)

8 Chapter 2. Content

mailto:erwan.pannier@gmail.com
https://github.com/radis/radis/issues/43
https://github.com/radis/radis/issues
https://groups.google.com/forum/#!forum/radis-radiation
https://radis.github.io/slack-invite/
https://spectralfit.gitlab.io/specair/
http://www.specair-radiation.net/

RADIS Documentation, Release 0.13.1

Refer to the Examples section for more examples, or to the RADIS Interactive Examples project.

See the Architecture section for an overview of the RADIS calculation steps.

2.1.3 Line Databases

List of supported line databases formats: KNOWN_DBFORMAT :
¢ [HITRAN-2016]

[HITRAN-2020]

[HITEMP-2010]

[CDSD-4000]

¢ [ExoMol-2020]

For download and configuration of line databases, see the Line Databases section

2.1.4 Interfaces

RADIS includes parsers and interfaces to read and return data in different formats:

Thermodynamic codes

Cantera

RADIS can compute gas mixture compositions under chemical equilibrium using CANTERA (in particular the
[CANTERA] equilibrate() function). Refer to get_eq_mole_fraction() for more information.

2.1.5 New features

RADIS is open-source, so everyone can contribute to the code development. Read the Developer Guide to get started.

You can also suggest or vote for new features below:

2.2 Line-by-line module

This is the core of RADIS: it calculates the spectral densities for a homogeneous slab of gas, and returns a Spectrum
object.

Calculations are performed within the SpectrumFactory class. calc_spectrum() is a high-level wrapper to
SpectrumFactory for most simple cases.

e Cite all references used

* Calculate a full range spectrum

For any other question you can use the Q&A forum, the GitHub issues or the community chats on Gitter or Slack .

2.2. Line-by-line module 9

https://github.com/radis/radis-examples#interactive-examples
https://github.com/radis/radis/contribute
https://feathub.com/radis/radis
https://groups.google.com/forum/#!forum/radis-radiation
https://github.com/radis/radis/issues
https://gitter.im/radis-radiation/community
https://radis.github.io/slack-invite/

RADIS Documentation, Release 0.13.1

2.2.1 Line databases

List of supported line databases formats: KNOWN_DBFORMAT

HITRAN

RADIS can automatically fetch HITRAN lines using the Astroquery module. This is done by specifying
databank=="hitran' in calc_spectrum() or by using the fetch_databank() method in SpectrumFactory.
Refer to fetch_astroquery() for more information.

You can also download the HITRAN databases files locally:

e HITRAN can be downloaded from https://hitran.org/1bl/. Expect ~80 Mb for CO2, or 50 Mb for H20. Cite with
[HITRAN-2020].

Note: RADIS has parsers to read line databases in Pandas dataframes. This can be useful if you want to edit the
database. see hit2df()

There are also functions to get HITRAN molecule ids, and vice-versa: get_molecule(),
get_molecule_identifier()

HITEMP

RADIS can read files from the HITEMP database.

» HITEMP-2010 files can be downloaded from https://hitran.org/hitemp/. Expect ~3 Gb for CO2 or ~10 Gb for
H20. Cite with [HITEMP-2010]

The ~/radis. json is then used to properly handle the line databases on the User environment. See the Configuration
file section, as well as the radis.misc.config module and the getDatabankList () function for more information.

starting from radis==0.9.28 you can also download HITEMP directly. Example

from radis import calc_spectrum
calc_spectrum(
wavenum_min=2500 / u.cm,
wavenum_max=4500 / u.cm,
molecule="0H",
Tgas=600,
databank="hitemp", # test by fetching directly
verbose=False,

* Some HITEMP line databases are pre-configured in the RADIS-/ab online environment. No install needed !

¢ If you just want to parse the HITEMP files, use fetch_hitemp()

from radis.io.hitemp import fetch_hitemp
fetch_hitemp("NO")

10 Chapter 2. Content

https://astroquery.readthedocs.io
https://hitran.org/lbl/
https://hitran.org/hitemp/

RADIS Documentation, Release 0.13.1

CDSD-4000

RADIS can read files from the CDSD-4000 database, however files have to be downloaded manually.

¢ CDSD-4000 files can be downloaded from ftp://ftp.iao.ru/pub/. Expect ~50 Gb for all CO2. Cite with
[CDSD-4000].

 Tabulated partition functions are availabe in the partition_functions.txt file on the [CDSD-4000] FTP
: ftp://ftp.iao.ru/pub/CDSD-4000/ . They can be loaded and interpolated with PartFuncCO2_CDSDtab.
This can be done automatically providing parfuncfmt: cdsd and parfunc = PATH/TO/
cdsd_partition_functions.txt is given in the ~/radis. json configuration file (see the Configuration

file).

The ~/radis. json is used to properly handle the line databases on the User environment. See the Configuration file
section, as well as the radis.misc.config module and the getDatabankList () function for more information.

Note: See cdsd2df() for the conversion to a Pandas DataFrame.

2.2.2 Calculating spectra

Calculate one molecule spectrum

In the following example, we calculate a CO spectrum at equilibrium from the latest HITRAN database, and plot the
transmittance:

s = calc_spectrum(
wavenum_min=1900,
wavenum_max=2300,
Tgas=700,
path_length=0.1,
molecule="CO",
mole_fraction=0.5,

isotope=1,
wstep=0.01,
databank="hitran' # or 'hitemp’
)

s.plot('transmittance_noslit')

Calculate multiple molecules spectrum

RADIS can also calculate the spectra of multiple molecules. In the following example, we add the contribution of CO2
and plot the transmittance:

s = calc_spectrum(
wavenum_min=1900,
wavenum_max=2300,
Tgas=700,
path_length=0.1,
mole_fraction={'C02':0.5, 'CO'":0.5},
wstep=0.01,

isotope=1,

(continues on next page)

2.2. Line-by-line module 11

ftp://ftp.iao.ru/pub/
ftp://ftp.iao.ru/pub/CDSD-4000/

RADIS Documentation, Release 0.13.1

(continued from previous page)

)

s.plot('transmittance_noslit')

Note that you can indicate the considered molecules either as a list in the molecule parameter, or in isotope or
mole_fraction. The following commands give the same result:

Give molecule:

s = calc_spectrum(
wavelength_min=4165,
wavelength_max=5000,
Tgas=1000,
path_length=0.1,
molecule=["C02", "CO0"],
mole_fraction=1,
isotope={"C0O2": "1,2", "CO": "1,2,3"},
wstep=0.01,
verbose=verbose,

Give isotope only

s = calc_spectrum(
wavelength_min=4165,
wavelength_max=5000,
Tgas=1000,
path_length=0.1,
isotope={"C02": "1,2", "CO": "1,2,3"},
verbose=verbose,

Give mole fractions only
s = calc_spectrum(
wavelength_min=4165,
wavelength_max=5000,
Tgas=1000,
path_length=0.1,
mole_fraction={"C02": 0.2, "CO": 0.8},
isotope="1,2",
verbose=verbose,

Be careful to be consistent and not to give partial or contradictory inputs.

Contradictory input:
s = calc_spectrum(
wavelength_min=4165,
wavelength_max=5000,
Tgas=1000,
path_length=0.1,
molecule=["C02"], # contradictory
mole_fraction=1,
isotope={"C0O2": "1,2", "CO": "1,2,3"},

(continues on next page)

12 Chapter 2. Content

RADIS Documentation, Release 0.13.1

(continued from previous page)

verbose=verbose,

)

Partial input:
s = calc_spectrum(
wavelength_min=4165,
wavelength_max=5000,
Tgas=1000,
path_length=0.1,
molecule=["C02", "CO0"], # contradictory
mole_fraction=1,
isotope={"C02": "1,2"}, # unclear for CO
verbose=verbose,

Equilibrium Conditions

By default RADIS calculates spectra at thermal equilibrium (one temperature).
The calc_spectrum() function requires a given mole fraction, which may be different from chemical equilibrium.

You can also compute the chemical equilibrium composition in other codes like [CANTERA], and feed the output to
RADIS calc_spectrum(). The get_eq_mole_fraction() function provides an interace to [CANTERA] directly
from RADIS

from radis import calc_spectrum, get_eq _mole_fraction

calculate gas composition of a 50% C02, 50% H20 mixture at 1600 K:
gas = get_eq_mole_fraction('C02:0.5, H20:0.5"', 1600, # K
le5 # Pa
)
calculate the contribution of H20 to the spectrum:
calc_spectrum(.. .,
mole_fraction=gas['H20"']

)

2.2. Line-by-line module 13

RADIS Documentation, Release 0.13.1

Nonequilibrium Calculations

Non-LTE calculations (multiple temperatures) require to know the vibrational and rotational energies of each level in
order to calculate the nonequilibrium populations.

You can either let RADIS calculate rovibrational energies with its built-in spectroscopic constants, or supply an energy
level database. In the latter case, you need to edit the Configuration file .

Fit a Spectrum
Calculating spectrum using GPU

RADIS also supports CUDA-native parallel computation, specifically for lineshape calculation and broadening. To use
these GPU-accelerated methods to compute the spectra, use either calc_spectrum() function with parameter mode
set to gpu, or eq_spectrum_gpu(). In order to use these methods, ensure that your system has an Nvidia GPU with
compute capability of atleast 3.0 and CUDA Toolkit 8.0 or above. Refer to GPU Spectrum Calculation on RADIS to
see how to setup your system to run GPU accelerated spectrum calculation methods, examples and performance tests.

Currently, GPU-powered spectra calculations are supported only at thermal equilibrium and therefore, the method to
calculate the spectra has been named eq_spectrum_gpu(). In order to use this method to calculate the spectra, follow
the same steps as in the case of a normal equilibrium spectra, and if using calc_spectrum() function set the parameter
mode to gpu, or use eq_spectrum_gpu()

One could compute the spectra with the assistance of GPU using the following code as well

s = calc_spectrum(
wavenum_min=1900,
wavenum_max=2300,
Tgas=700,
path_length=0.1,
mole_fraction=0.01,

isotope=1,
mode="gpu'
)

Refer to GPU Spectrum Calculation on RADIS for more details.

2.2.3 Under the hood

Flow Chart

RADIS can calculate populations of emitting/absorbing levels by scaling tabulated data (equilibrium) or from the
rovibrational energies (nonequilibrium), get the emission and absorption coefficients from Line Databases, calculate
the line broadening using various strategies to improve Performances, and produce a Spectrum object. These steps can
be summarized in the flow chart below:

The detail of the functions that perform each step of the RADIS calculation flow chart is given in Architecture.

14 Chapter 2. Content

RADIS Documentation, Release 0.13.1

The Spectrum Factory

Most RADIS calculations can be done using the calc_spectrum() function. Advanced examples require to use the
SpectrumFactory class, which is the core of RADIS line-by-line calculations. calc_spectrum() is a wrapper to
SpectrumFactory for the simple cases.

The SpectrumFactory allows you to :
* calculate multiple spectra (batch processing) with a same line database
* edit the line database manually
* have access to intermediary calculation variables
* connect to a database of precomputed spectra on your computer

To use the SpectrumFactory, first load your own line database with load_databank(), and then calculate several
spectra in batch using eq_spectrum() and non_eq_spectrum(), and units

import astropy.units as u

from radis import SpectrumFactory

sf = SpectrumFactory(wavelength min=4165 * u.nm,
wavelength_max=4200 * u.nm,
path_length=0.1 * u.m,
pressure=20 * u.mbar,
molecule="C02",

wstep = 0.01,
isotope='1,2",
cutoff=1e-25, # cm/molecule
broadening_max_width=10, # cm-1
)
sf.load_databank ('HITRAN-CO2-TEST', load_columns='noneq') # this database must be.

—defined in ~/radis. json

sl = sf.eqg_spectrum(Tgas=300 * u.K)

s2 = sf.eq_spectrum(Tgas=2000 * u.K)

s3 = sf.non_eq_spectrum(Tvib=2000 * u.K, Trot=300 * u.K)

Note that for non-LTE calculations, specific columns must be loaded. This is done by using the
load_columns="noneq' parameter. See load_databank () for more information.

Configuration file

The ~/radis. json configuration file is used to initialize your radis.config. It will :
* store the list and attributes of the Line databases available on your computer.
* change global user preferences, such as plotting styles and libraries, or warnings thresholds, or default algorithms.

The list of all available parameters is given in the default_radis.json file. Any key added to your ~/radis. json will
override the value of default_radis. json.

Note: You can also update config parameters at runtime by setting:

import radis
radis.config["SOME_KEY"] = "SOME_VALUE"

Although it is recommended to simply edit your ~/radis. json file.

2.2. Line-by-line module 15

https://docs.astropy.org/en/stable/units/index.html#module-astropy.units
https://github.com/radis/radis/blob/develop/radis/default_radis.json

RADIS Documentation, Release 0.13.1

Databases downloaded from ‘hitran’, ‘hitemp’ and ‘exomol” with calc_spectrum() or fetch_databank() are au-
tomatically registered in the ~/radis. json configuration file. The default download path is ~/.radisdb. You can
change this at runtime by setting the radis.config["DEFAULT_DOWNLOAD_PATH"] key, or (recommended) by adding
a DEFAULT_DOWNLOAD_PATH key in your ~/radis. json configuration file.

The configuration file will help to:
* handle local line databases that contains multiple files
* use custom tabulated partition functions for equilibrium calculations

* use custom, precomputed energy levels for nonequilibrium calculations

Note: it is also possible to work with local line databases without a configuration file, either by giving a file to the
databank=. .. parameter of calc_spectrum() , or by giving to load_databank() the line database path, format,
and partition function format directly.

However, this is not recommended and should only be used if for some reason you cannot create a configuration file.

A ~/radis. json is user-dependant, and machine-dependant. It contains a list of database, each of which is specific
to a given molecule. It typically looks like:

str: Typical expected format of a ~/radis.json entry:

{
"database": { # database key: all databanks.,

—Iinformation are stored in this key
"MY-HITEMP-CO2": { # your databank name: use this in.,
—calc_spectrum()
or SpectrumFactory.load_databank()
"path": [# no "", multipath allowed
"D:\\Databases\\HITEMP-CO2\\hitemp_07",
"D:\\Databases\\HITEMP-CO2\\hitemp_08",
"D:\\Databases\\HITEMP-CO2\\hitemp_09"
1,
"format": "hitran", # 'hitran' (HITRAN/HITEMP), 'cdsd-
—hitemp', 'cdsd-4000'
databank text file format. More.

—info in
SpectrumFactory.load_databank.,
— function.
"parfuncfmt"”: "hapi" # calculate partition functions
}
}
}

Following is an example where the path variable uses a wildcard * to find all the files that have hitemp_* in their
names:

{
"database": { # database key: all databanks.,

—Iinformation are stored in this key
"MY-HITEMP-CO2": { # your databank name: use this in.,
—calc_spectrum()
or SpectrumFactory.load_databank()
"path": "D:\\Databases\\HITEMP-CO2\\hitemp_*", # To load all hitemp files,

(continues on next page)

16 Chapter 2. Content

RADIS Documentation, Release 0.13.1

(continued from previous page)

—~directly
"format": "hitran", # 'hitran' (HITRAN/HITEMP), 'cdsd-
~hitemp', 'cdsd-4000'
databank text file format. More.

—info in
SpectrumFactory.load_databank.,
— function.
"parfuncfmt": "hapi" # calculate partition functions
}
}
3

In the former example, for equilibrium calculations, RADIS uses [HAPI] to retrieve partition functions tabulated with
TIPS-2017. It is also possible to use your own partition functions, for instance:

{
"database": { # database key: all databanks.
< information are stored in this key
"MY-HITEMP-CO2": { # your databank name: use this in.,

—calc_spectrum()
or SpectrumFactory.load_
—databank()

"path": [# no "", multipath allowed
"D:\\Databases\\HITEMP-CO2\\hitemp_07",
"D:\\Databases\\HITEMP-CO2\\hitemp_08",
"D:\\Databases\\HITEMP-CO2\\hitemp_09"

1,

"format": "hitran", # 'hitran' (HITRAN/HITEMP), 'cdsd-

~hitemp', 'cdsd-4000'

databank text file format. More.
—info in

SpectrumFactory.load_databank.
—function.

"parfuncfmt": "cdsd", # 'cdsd', 'hapi', etc.

format to read tabulated.
—partition function

file. If ‘hapi’, then HAPI.,
< (HITRAN Python

interface) is used to retrieve.
—them (valid if

your databank is HITRAN data)..
—HAPI is embedded

into RADIS. Check the version..
—If not specified then 'hapi'

1is used as default

"parfunc": "PATH/TO/cdsd_partition_functions.txt"

path to tabulated partition.
—function to use.

If ‘parfuncfmt® is “hapi’ then.
< parfunc®

should be the link to the hapi.
wpy file. If

(continues on next page)

2.2. Line-by-line module 17

RADIS Documentation, Release 0.13.1

(continued from previous page)

not given, then the hapi.py.
—embedded in RADIS
1s used (check version)

By default, for nonequilibrium calculations, RADIS built-in spectroscopic constants are used to calculate the energy
levels for CO2. It is also possible to use your own Energy level database. For instance:

{
"database": { # database key: all databanks.,

—Iinformation are stored in this key
"MY-HITEMP-CO2": { # your databank name: use this in,,
—calc_spectrum()
or SpectrumFactory.load_
—databank ()

"path": [# no
"D:\\Databases\\HITEMP-CO2\\hitemp_07",
"D:\\Databases\\HITEMP-CO2\\hitemp_08",
"D:\\Databases\\HITEMP-CO2\\hitemp_09"

nn

, multipath allowed

1,
"format": "hitran", # 'hitran' (HITRAN/HITEMP), 'cdsd-

—hitemp', 'cdsd-4000'
databank text file format..
—More info in
SpectrumFactory.load_databank.,
— function.
1s used (check version)
"levels_isol": "D:\\PATH_TO\\energies_of_626_isotope.levels",
"levels_iso2": "D:\\PATH_TO\\energies_of_636_isotope.levels",
"levelsfmt": "cdsd", # 'cdsd', etc.
how to read the previous file..
—Default None.
"levelszpe": "2531.828" # zero-point-energy (cm-1):.
—offset for all level
energies. Default 0 (if not.
—given)
}
}
}

The full description of a json entry is given in DBFORMAT:

* path corresponds to Line databases (here: downloaded from [HITEMP-2010]) and the levels_iso are user
generated Energy databases (here: calculated from the [CDSD-4000] Hamiltonian on non-distributed code,
which takes into account non diagonal coupling terms).

e format is the databank text file format. It can be one of 'hitran' (for HITRAN / HITEMP 2010),
'cdsd-hitemp' and 'cdsd-4000' for the different CDSD versions (for CO2 only). See full list in
KNOWN_DBFORMAT.

e parfuncfmt: cdsd, hapi is the format of the tabulated partition functions used. If "hapi', then [HAPI] is
used to retrieve them (valid if your databank is HITRAN data). See full list in KNOWN_PARFUNCFORMAT

18 Chapter 2. Content

RADIS Documentation, Release 0.13.1

 parfunc is the path to the tabulated partition function to use in in equilibrium calculations (eq_spectrum()).
If parfuncfmt is 'hapi' then parfunc should be the link to the hapi.py file. If not given, then the hapi
embedded in RADIS is used (check version)

e levels_iso# are the path to the energy levels to use for each isotope, which are needed for nonequilibrium
calculations (non_eq_spectrum()).

* levelsfmt is the energy levels database format. Typically, 'radis', and various implementation of
[CDSD-4000] nonequilibrium partitioning of vibrational and rotational energy: 'cdsd-pc', 'cdsd-pcN',
'cdsd-hamil'. See full list in KNOWN_LVLFORMAT

How to create the configuration file?

A default ~/radis. json configuration file can be generated with setup_test_line_databases(), which creates
two test databases from fragments of [HITRAN-2020] line databases:

from radis.test.utils import setup_test_line_databases
setup_test_line_databases()

which will create a ~/radis. json file with the following content

{
"database": {
"HITRAN-CO2-TEST": {

"info": "HITRAN 2016 database, C02, 1 main isotope (C02-626), bandhead: 2380-
2398 cm-1 (4165-4200 nm)",

"path": "PATH_TO\\radis\\radis\\test\\files\\hitran_co2_626_bandhead_4165_4200nm.

—par",
"format": "hitran",
"parfuncfmt": "hapi",
"levelsfmt": "radis"
1,
"HITRAN-CO-TEST": {
"info": "HITRAN 2016 database, CO, 3 main isotopes (CO0-26, 36, 28), 2000-2300 cm-

<4>].",
"path": "PATH_TO\\radis\\radis\\test\\files\\hitran_co_3iso_2000_2300cm.par",
"format": "hitran",
"parfuncfmt": "hapi",
"levelsfmt": "radis"
},
"HITEMP-CO2-TEST": {

"info": "HITEMP-2010, C02, 3 main isotope (C02-626, 636, 628), 2283.7-2285.1 cm-1

"path": "PATH_TO\\radis\\radis\\test\\files\\cdsd_hitemp_09_fragment.txt",
"format": "cdsd-hitemp",

"parfuncfmt": "hapi",
"levelsfmt": "radis"

If you configuration file exists already, the test databases will simply be appended.

2.2. Line-by-line module 19

RADIS Documentation, Release 0.13.1

2.2.4 Advanced

Calculation Flow Chart

Refer to Architecture for an overview of how equilibrium and nonequilibrium calculations are conducted.

Use Custom Spectroscopic constants

Spectroscopic constants are a property of the RADIS ElectronicState class. All molecules are stored in the
Molecules dictionary. You need to update this dictionary before running your calculation in order to use your own
spectroscopic constants.

An example of how to use your own spectroscopic constants:

from radis import calc_spectrum
from radis.db.molecules import Molecules, ElectronicState

Molecules['CO2']J[1]['X"'] = ElectronicState('C02', isotope=1, state='X', term_symbol="'1lu+
spectroscopic_constants='my_constants.json', # <<< YOUR.
—FILE HERE
spectroscopic_constants_type="'dunham',
Ediss=44600,
)

s = calc_spectrum(...)

* Calculate Rovibrational Energies

Vibrational bands

To calculate vibrational bands of a given spectrum separately (vibrational-state-specific calculations), use the
eq_bands() and non_eq_bands() methods. See the test_plot_all_C02_bandheads() example in radis/
test/1lbl/test_bands.py for more information.

Connect to a Spectrum Database

In RADIS, the same code can be used to retrieve precomputed spectra if they exist, or calculate them and store them if
they don’t. See Precompute Spectra

* Spectrum Database
2.2.5 Performance
RADIS is very optimized, making use of C-compiled libraries (NumPy, Numba) for computationally intensive steps,

and data analysis libraries (Pandas) to handle lines databases efficiently. Additionaly, different strategies and parameters
are used to improve performances further:

20 Chapter 2. Content

RADIS Documentation, Release 0.13.1

Line Database Reduction Strategies

By default:

e linestrength cutoff : lines with low linestrength are discarded after the new populations are calculated. Parameter:
cutoff (see the default value in the arguments of eq_spectrum())

Additional strategies (deactivated by default):

* weak lines (pseudo-continuum): lines which are close to a much stronger line are called weak lines. They are
added to a pseudo-continuum and their lineshape is calculated with a simple rectangular approximation. See the
default value in the arguments of pseudo_continuum_threshold (see arguments of eq_spectrum())

Lineshape optimizations

Lineshape convolution is usually the performance bottleneck in any line-by-line code.
Two approaches can be used:

* improve the convolution efficiency. This involves using an efficient convolution algorithm, using a reduced
convolution kernel, analytical approximations, or multiple spectral grid.

* reduce the number of convolutions (for a given number of lines): this is done using the LDM strategy.

RADIS implements the two approaches as well as various strategies and parameters to calculate the lineshapes effi-
ciently.

* broadening width : lineshapes are calculated on a reduced spectral range. Voigt computation calculation times
scale linearly with that parameter. Gaussian x Lorentzian calculation times scale as a square with that parameter.
parameters: broadening_max_width

» Voigt approximation : Voigt is calculated with an analytical approximation. Parameter
broadening_max_width and default values in the arguments of eq_spectrum(). See voigt_lineshape().

* Fortran precompiled : previous Voigt analytical approximation is precompiled in Fortran to improve performance
times. This is always the case and cannot be changed on the user side at the moment. See the source code of
voigt_lineshape().

* Multiple spectral grids : many LBL codes use different spectral grids to calculate the lineshape wings with a
lower resolution. This strategy is not implemented in RADIS.

* LDM :lines are projected on a Lineshape database to reduce the number of calculated lineshapes from millions to
afew dozens. With this optimization strategy, the lineshape convolution becomes almost instantaneous and all the
other strategies are rendered useless. Projection of all lines on the lineshape database becomes the performance
bottleneck. parameters: ldm_res_L, 1dm_res_G. (this is the default strategy implemented in RADIS). Learn
more in [Spectral-Synthesis-Algorithm]

More details on the parameters below:

Computation parameters

If performance is an issue (for instance when calculating polyatomic spectra on large spectral ranges), you may want
to tweak the computation parameters in calc_spectrum() and SpectrumFactory. In particular, the parameters that
have the highest impact on the calculation performances are:

* The broadening_max_width, which defines the spectral range over which the broadening is calculated.

e The linestrength cutoff, which defines which low intensity lines should be discarded. See
plot_linestrength_hist() to choose a correct cutoff.

2.2. Line-by-line module 21

RADIS Documentation, Release 0.13.1

Check the [RADIS-2018] article for a quantitative assessment of the influence of the different parameters.

Other strategies are possible, such as calculating the weak lines in a pseudo-continuum. This can result in orders of
magnitude improvements in computation performances.:

¢ The pseudo_continuum_threshold defines which treshold should be used.

See the test_abscoeff_continuum() caseinradis/test/1lbl/test_broadening.py for an example, which can
be run with (you will need the CDSD-HITEMP database installed)

pytest radis/test/lbl/test_broadening.py -m "test_abscoeff_continuum"

Choose the right wavenumber grid

wstep determines the wavenumber grid’s resolution. Smaller the value, higher the resolution and vice-versa. By default
radis uses wstep=0.01. You can manually set the wstep value in calc_spectrum() and SpectrumFactory. To
get more accurate result you can further reduce the value, and to increase the performance you can increase the value.

Based on wstep, it will determine the number of gridpoints per linewidth. To make sure that there are enough
gridpoints, Radis will raise an Accuracy Warning _check_accuracy() if number of gridpoints are less than
GRIDPOINTS_PER_LINEWIDTH_WARN_THRESHOLD and raises an Accuracy Error if number of gridpoints are less than
GRIDPOINTS_PER_LINEWIDTH_ERROR_THRESHOLD.

From 0.9.30 a new mode wstep='auto' has been added which directly computes the optimum value of
wstep ensuring both performance and accuracy. It is ensured that there are slightly more or less than
GRIDPOINTS_PER_LINEWIDTH_WARN_THRESHOLD points for each linewidth.

Note: wstep = ‘auto’ is optimized for performances while ensuring accuracy, but is still experimental in 0.9.30.
Feedback welcome!

Sparse wavenumber grid

To compute large band spectra with a small number of lines, RADIS includes a sparse wavenumber implementation of
the DIT algorithm, which is activated based on a scarcity criterion (Nlines/Ngrid_points > 1).

The sparse version can be forced to be activated or deactivated. This behavior is done by setting the
SPARSE_WAVENUMBER key of the radis.config dictionary, or of the ~/radis.json user file.

See the HITRAN full-range example for an example.

Database loading

Line database can be a performance bottleneck, especially for large polyatomic molecules in the [HITEMP-2010] or
[CDSD-4000] databases. Line database files are automatically cached by RADIS under a .h5 format after they are
loaded the first time. If you want to deactivate this behaviour, use use_cached=False in calc_spectrum(), or
db_use_cached=False, 1lvl_use_cached=False in SpectrumFactory.

You can also use init_databank () instead of the default load_databank (). The former will save the line database
parameter, and only load them if needed. This is useful if used in conjonction with init_database(), which will
retrieve precomputed spectra from a database if they exist.

22 Chapter 2. Content

RADIS Documentation, Release 0.13.1

Manipulate the database

If for any reason, you want to manipulate the line database manually (for instance, keeping only lines emitting by a
particular level), you need to access the df® attribute of SpectrumFactory.

Warning: never overwrite the df0 attribute, else some metadata may be lost in the process. Only use inplace
operations.

For instance:

sf = SpectrumFactory(
wavenum_min= 2150.4,
wavenum_max=2151.4,
pressure=1,
isotope=1)
sf.load_databank('HITRAN-CO-TEST")
sf.df0.drop(sf.df0[sf.df0.vu!=1].index, inplace=True) # keep lines emitted by v'=1 only
sf.eq_spectrum(Tgas=3000, name='vu=1").plot(Q)

d£f0 contains the lines as they are loaded from the database. df1l is generated during the spectrum calculation, after
the line database reduction steps, population calculation, and scaling of intensity and broadening parameters with the
calculated conditions.

Tabulated Partition Functions
At nonequilibrium, calculating partition functions by full summation of all rovibrational levels can become costly.

Radis offers to tabulate them just-in-time, using the parsum_mode='tabulation' of calc_spectrum() or
SpectrumFactory. See parsum_mode.

Profiler

You may want to track where the calculation is taking some time. You can set verbose=1 or higher to print the time
spent on the different calculation steps at runtime. Example with verbose=3:

s = calc_spectrum(1900, 2300, # cm-1
molecule="'C0O"',
isotope='1,2,3",
pressure=1.01325, # bar

Tvib=1000, # K
Trot=300, # K
mole_fraction=0.1,
verbose=3,

)

Performance profiles are kept in the output spectrum conditions['profiler'] dictionary. You can also use the
print_perf_profile() method in the SpectrumFactory object or the print_perf_profile() method in the Spec-
trum object to print them in the console :

For the above example:

s.print_perf profile()

2.2. Line-by-line module 23

RADIS Documentation, Release 0.13.1

Output:

spectrum_calculation 0.189s
check_line_databank 0.000s check_non_eq_param 0.042s fetch_energy_5 0.015s calc_weight_trans
0.008s reinitialize 0.002s

copy_database 0.000s memory_usage_warning 0.002s reset_population 0.000s

calc_noneq_population 0.041s
part_function 0.035s population 0.006s

scaled_non_eq_linestrength 0.005s
map_part_func 0.001s corrected_population_se 0.003s

calc_emission_integral 0.006s applied_linestrength_cutoff 0.002s calc_lineshift 0.001s calc_hwhm
0.007s generate_wavenumber_arrays 0.001s calc_line_broadening 0.074s

precompute_L.DM_lineshapes 0.012s LDM_ Initialized_vectors 0.000s
LDM_closest_matching_line 0.001s LDM_Distribute_lines 0.001s LDM_convolve 0.060s
others 0.001s

calc_other_spectral_quan 0.003s generate_spectrum_obj 0.000s others -0.016s

Finally, you can also use the SpectrumFactory generate_perf_profile() Spectrum generate_perf_profile()
methods to generate an interactive profiler in the browser.

1zcaleulation_time
0.788 s (100.0%)

:1zcale_line_broadening lzcheck_non_eq pardalc_noneq populdch_enepeidd
0.590 s (74.8%) 0.080 s (10.1%) 0.070s (8.9%) BOs(3.4s (|9

=1::cale_line_broadening:self :1:DLM_convolve e Dlheck non_eq_parami1:part_functiofpu_energjigh
02925 0.278 s (35.3%) Ds (2 0.08s 0 5 (7.6%) |s 0.0301 914
:1:DLM_convolve:self DL part_function::g
0278 s 0198 0.0601 s

Predict Time

predict_time() function uses the input parameters like Spectral Range, Number of lines, wstep,
truncation to predict the estimated calculation time for the Spectrum broadening step(bottleneck step) for the current
optimization and broadening_method. The formula for predicting time is based on benchmarks performed on various
parameters for different optimization, broadening_method and deriving its time complexity.

The following Benchmarks were used to derive the time complexity:
https://anandxkumar.github.io/Benchmark_Visualization_GSoC_2021/

Complexity vs Calculation Time Visualizations for different optimizations and broadening_method:

LBL>Voigt: LINK
DIT>Voigt: LINK
DIT>FFT: LINK

24 Chapter 2. Content

https://user-images.githubusercontent.com/16088743/128018032-6049be72-1881-46ac-9d7c-1ed89f9c4f42.png
https://anandxkumar.github.io/Benchmark_Visualization_GSoC_2021/
https://public.tableau.com/app/profile/anand.kumar4841/viz/LegacyComplexityvsCalculationTime/Sheet1
https://public.tableau.com/app/profile/anand.kumar4841/viz/2_096e-07lines_calculated7_185e-091wLwGSpectral_PointslogSpectral_Points/Sheet1
https://public.tableau.com/app/profile/anand.kumar4841/viz/LDMLatestLDMFFTComplexity4_675e-081wLwGSpectralPointslogSpectralPoints/Sheet1

RADIS Documentation, Release 0.13.1

Precompute Spectra

See init_database(), which is the direct integration of SpecDatabase in a SpectrumFactory

2.3 The Spectrum object

RADIS has powerful tools to post-process spectra created by the line-by-line module or by other spectral codes.

At the core of the post-processing is the Spectrum class, which features methods to:

generate Spectrum objects from text files or python arrays.

rescale a spectrum without redoing the line-by-line calculation.

apply instrumental slit functions.

plot with one line and in whatever unit.

crop, offset or interpolate.

remove baselines.

multiply or add constants as simply as with s=10%s or s=s+0. 2 in Python.

store an experimental or a calculated spectrum while retaining the metadata.

compare different spectra.

combine multiple spectra along the /ine-of-sight.

manipulate a folder of spectra easily with spectrum Databases.

compute transmittance from absorbance, or whatever missing spectral arrays.

use the line survey tool to identify each line.

Load an experimental spectrum

Line Survey

Blackbody radiation

Remove a baseline

GPU Accelerated Spectra

Calculate non-LTE spectra of carbon-monoxide

Use different plot themes

Calculate a large spectrum by part

Compare CO spectrum from the GEISA and HITRAN database
Calculate a spectrum from HITEMP

Calculate a spectrum from ExoMol

Real-time GPU Accelerated Spectra (Interactive)

See populations of computed levels

Spectrum Database

Compare CO xsections from the ExoMol and HITEMP database

Post-process using Specutils

2.3. The Spectrum object

25

RADIS Documentation, Release 0.13.1

* Multi-temperature Fit
* [temperature fit

Refer to the guide below for an exhaustive list of all features:

For any other question you can use the Q&A forum, the GitHub issues or the community chats on Gitter or Slack .

2.3.1 How to generate a Spectrum?

Calculate a Spectrum

Usually a Spectrum object is the output from a line-by-line (LBL) radiation code. Refer to the LBL documentation for
that. Example using the RADIS LBL module with calc_spectrum():

from radis import calc_spectrum
s = calc_spectrum(...) # s is a Spectrum object

Or with the SpectrumFactory class, which can be used to batch-generate multiple spectra using the same line
database:

from radis import SpectrumFactory

sf = SpectrumFactory(...)

sf.fetch_databank("hitemp", load_columns='noneq') # or 'hitran', 'exomol', etc.
s = sf.eq_spectrum(...)

s2 = sf.non_eqg_spectrum(...)

Note that the SpectrumFactory class has the init_database () method that automatically retrieves a spectrum from
a SpecDatabase if you calculated it already, or calculates it and stores it if you didn’t. Very useful for spectra that
require long computational times!

Initialize from Python arrays

The standard way to build a Radis Spectrum is from a dictionary of numpy arrays:

w, k, I are numpy arrays for wavenumbers, absorption coefficient, and radiance.

from radis import Spectrum

s = Spectrum({"wavenumber":w, "abscoeff":k, "radiance_noslit":I},
units={"radiance_noslit":"mW/cm2/sr/nm", "abscoeff":"cm-1"})

Or:

s = Spectrum({"abscoeff":(w,k), "radiance_noslit":(w,I)},
wunit="cm-1"
units={"radiance_noslit":"mW/cm2/sr/nm", "abscoeff":"cm-1"})

You can also use the from_array () convenience function:

w, T are two numpy arrays

from radis import Spectrum

s = Spectrum. from_array(w, T, 'transmittance_noslit',
wunit="nm', unit='") # adimensioned

26 Chapter 2. Content

https://groups.google.com/forum/#!forum/radis-radiation
https://github.com/radis/radis/issues
https://gitter.im/radis-radiation/community
https://radis.github.io/slack-invite/
https://numpy.org/doc/stable/reference/index.html#module-numpy

RADIS Documentation, Release 0.13.1

Dimensionned arrays can also be used directly

import astropy.units as u

w = np.linspace(200, 300) * u.nm

I np.random.rand(len(w)) * u.mW/u.cm**2/u.sr/u.nm
s = Spectrum. from_array(w, I, 'radiance_noslit')

Other convenience functions have been added to handle the usual cases: calculated_spectrum(),
transmittance_spectrum() and experimental_spectrum():

w, T, I are numpy arrays for wavelength, transmittance and radiance
from radis import calculated_spectrum, transmittance_spectrum, experimental_spectrum

sl = calculated_spectrum(w, I, wunit='nm', Iunit='W/cm2/sr/nm") # creates 'radiance_
—noslit'
s2 = transmittance_spectrum(w, T, wunit='nm') # creates

—'transmittance_noslit'
s3 = experimental_spectrum(w, I, wunit='nm', Iunit='W/cm2/sr/nm") # creates 'radiance’

Initialize from Specutils

Use from_specutils() to convert from a specutils specutils.spectra.spectrumld.SpectrumlD object

from radis import Spectrum
Spectrum. from_specutils(spectrum)

Initialize from a text file

Spectrum objects can also be generated directly from a text file.

From a file, use from_txt ()

'exp_spectrum.txt' contains a spectrum

from radis import Spectrum

s = Spectrum.from_txt('exp_spectrum.txt', 'radiance',
wunit="nm', unit='mW/cm2/sr/nm")

It is, however, recommended to use the RADIS . spec json format to store and load arrays :

Load from a .spec file

A . spec file contains all the Spectrum spectral arrays as well as the input conditions used to generate it. To retrieve it
use the load_spec() function:

s = load_spec('my_spectrum.spec')

Sometimes the . spec file may have been generated under a compressed format where redundant spectral arrays have
been removed (for instance, transmittance if you already know absorbance). Use the update () method to regenerate
missing spectral arrays:

s = load_spec('my_spectrum.spec', binary=True)
s.update()

2.3. The Spectrum object 27

https://specutils.readthedocs.io/en/stable/api/specutils.Spectrum1D.html#specutils.Spectrum1D

RADIS Documentation, Release 0.13.1

If many spectra are stored in a folder, it may be time to set up a SpecDatabase structure to easily see all Spectrum
conditions and get Spectrum that suits specific parameters

¢ Load an experimental spectrum
e Remove a baseline

* | temperature fit

Load from a HDFb5 file

This is the fastest way to read a Spectrum object from disk. It keeps metadata and units, and you can also load only a
part of a very large spectrum. Use from_hdf5()

Spectrum. from_hdf5("rad_hdf.h5", wmin=2100, wmax=2200, columns=['abscoeff', 'emisscoeff
~'1D

Calculate a test spectrum

You need a spectrum immediatly, to run some tests ? Use test_spectrum()

s = radis.test_spectrum()
s.apply_slit(0.5, 'nm")
s.plot('radiance')

This returns the CO spectrum from the first documentation example

spectrum/examples/co_spectrum_700K.png

scale
60 Y%

Generate a Blackbody (Planck) function object

In RADIS you can either use the planck() and planck_wn() functions that generate Planck radiation arrays for
wavelength and wavenumber, respectively.

Or, you can use the sPlanck() function that returns a Spectrum object, with all the associated methods (add in a
line-of-sight, compare, etc.)

Example:

s = sPlanck(wavelength_min=3000, wavelength_max=50000,
T=288, eps=1)
s.plot()

* Blackbody radiation

28 Chapter 2. Content

RADIS Documentation, Release 0.13.1

2.3.2 Spectral Arrays

A Spectrum object can contain one spectral arrays, such as 'radiance’ for emission spectra, or 'transmittance’
for absorption spectra. It can also contain both emission and absorption quantities to be later combined with other
spectra by solving the radiative transfer equation.

Some variables represent quantities that have been convolved with an instrumental slit function, as measured in exper-
imental spectra:

e 'radiance': the spectral radiance, convolved by the instrument function (typically in :math: 'mW/cm*2/sr/
nm'). This is sometimes confusingly called spectral intensity.

e "transmittance': the directional spectral transmittance (:math:® to :math:1), convolved by the instrument
function.

* 'emissivity': the directional spectral emissivity (:math:® to :math:1), convolved by the instrument function.
The spectral emissivity is the radiance emitted by a surface divided by that emitted by a black body at the same
temperature as that surface. This value is only defined under thermal equilibrium.

Other variables represent quantities that have not been convolved (theoretical spectra):
 'radiance_noslit': the spectral radiance (typically in mW/cm? /sr/nm). This

is sometimes confusingly called spectral intensity. - 'transmittance_noslit': the directional spectral transmit-
tance (:math:0 to :math:1) - 'emissivity_noslit': spectral emissivity (0 to 1) i.e. the radiance emitted by a surface

divided by that emitted by a black body at the same temperature as that surface. This value is only defined
under thermal equilibrium.

* 'emisscoeff': the directional spectral emission density (typically in :math: 'mW/cmA3/sr/nm").
* 'absorbance': the directional spectral absorbance (no dimension), also called optical depth.

* 'abscoeff': spectral absorption coefficient (typically in :math: 'cmA {-1} "), also called opacity. This is some-
times found as the extinction coefficient in the literature (strictly speaking, extinction is absorption + diffusion,
the latter being negligible in the infrared).

e 'xsection': absorption cross-section, typically in cm2
Additionally, RADIS may calculate extra quantities such as:

* 'emisscoeff_continuum': the pseudo-continuum part of the spectral emission density 'emisscoeff", that
can be generated by SpectrumFactory

e 'abscoeff_continuum' the pseudo-continuum part of the spectral absorption coefficient 'abscoeff’, that
can be generated by SpectrumFactory

See the latest list in the CONVOLUTED_QUANTITIES and NON_CONVOLUTED_QUANTITIES.
Custom spectral arrays

A Spectrum object is built on top of a dictionary structure, and can handle spectral arrays with any name.

Custom spectral arrays with arbitrary units can be defined when creating a Spectrum object, for instance:

w, I are two numpy arrays
s = Spectrum. from_array(w, I, 'irradiance',
wunit="nm', unit='w/cm2/nm")

Although not recommended, it is also possible to directly edit the dictionary containing the objects. For instance, this
is done in CO2 radiative forcing example to calculate irradiance from radiance (by multiplying by 'pi' and changing
the unit):

2.3. The Spectrum object 29

https://github.com/radis/radis-examples/blob/master/ex_radiative_forcing_co2/radiative_forcing_co2.py

RADIS Documentation, Release 0.13.1

s._q['irradiance'] = s.get('radiance noslit')[1]*pi
s.units['irradiance'] = s.units['radiance_noslit'].replace('/sr', '")

The unit conversion methods will properly work with custom units.

Warning: Rescaling or combining spectra with custom quantities may result in errors.

Relations between quantities

Most of the quantities above can be recomputed from one another. In a homogeneous slab, one requires an emission
spectral density, and an absorption spectral density, to be able to recompute the other quantities (provided that conditions
such as path length are given). Under equilibrium, only one quantity is needed. Missing quantities can be recomputed
automatically with the update () method.

Units

Default units are stored in the units dictionary

It is strongly advised not to modify the dictionary above. However, spectral arrays can be retrieved in arbitrary units
with the get () method.

When a spectral unit is convolved with apply_slit(), a new convolved spectral array is created. The unit of the
convolved spectral array may be different, depending on how the slit function was normalized. Several options are
available in RADIS. Please refer to the documentation of the apply_s1lit() method.

2.3.3 How to access Spectrum properties?

Get spectral arrays

Spectral Arrays of a Spectrum object can be stored in arbitrary wavespace (wavenumbers, wavelengths in air, or wave-
lengths in vacuum) and arbitrary units.

Therefore, it is recommendeded to use the get () method to retrieve the quantity un the units you want:

w, I = s.get('transmittance_noslit', wunit="cm-1")
s.get('radiance_noslit', wunit="nm', Iunit='W/cm2/sr/nm',
medium="air")

=
Il

Use with return_units to get dimensioned Astropy Quantities

w, R = s.get('radiance_noslit', return_units=True)
w, R are astropy quantities

See spectral arrays for the list of spectral arrays.

30 Chapter 2. Content

RADIS Documentation, Release 0.13.1

Get wavelength/wavenumber

Use the get_wavelength() and get_wavenumber () methods:

w_nm = s.get_wavelength()
w_cm = s.get_wavenumber()

Print Spectrum conditions

Want to know under which calculation conditions was your Spectrum object generated, or under which experimental
conditions it was measured? Just print it:

print(s)

(that shows all spectral arrays stored in the object, all keys and values in the conditions dictionary, and all
atoms/molecules stored in the populations dictionary)

You can also show the conditions only with print_conditions():

s.print_conditions()

Plot spectral arrays

Use plot):

s.plot('radiance_noslit")

You can plot on the same figure as before using the convenient nfig parameter:

s_exp.plot('radiance_noslit', nfig="same')

But for comparing different spectra you may want to use plot_diff() directly.

Plot populations

Get or plot populations computed in calculations. Use get_populations() or plot_populations():

s.plot_populations('vib', nunit='cm-3")

 See populations of computed levels

Plot line survey

Use the line_survey () method. Example of output:

from radis import SpectrumFactory

sf = SpectrumFactory(
wavenum_min=2380,
wavenum_max=2400,
mole_fraction=400e-6,
path_length=100, # cm

(continues on next page)

2.3. The Spectrum object 31

RADIS Documentation, Release 0.13.1

(continued from previous page)

isotope=[1],

)
sf.load_databank('HITRAN-CO2-TEST")
s = sf.eq_spectrum(Tgas=1500)
s.apply_slit(0.5)
s.line_survey(overlay="radiance_noslit', barwidth=0.01)

* Line Survey

 See populations of computed levels

Know if a spectrum has nan

has_nan() looks over all spectral quantities. print (s) will also show the number of nans per quantity

s = radis.test_spectrum()
s.has_nan(Q)

2.3.4 How to export ?

Save a Spectrum object

To store use the store() method:

s is a Spectrum object
s.store('temp_file.spec')

from radis import load_spec

s2 = load_spec('temp_file.spec")
assert s == s2 # compare both

The generated . spec file can be read (and edited) with any text editor. However, it may take a lot of space. If memory
is important, you may use the compress=True argument which will remove redundant spectral arrays (for instance,
transmittance if you already know absorbance), and store the .spec file under binary format. Use the update () method
to regenerate missing quantities:

s.store('temp_file.spec', compress=True, if_exists_then='replace')
s2 = load_spec('temp_file.spec")
s2.update() # regenerate missing quantities

If calculating many spectra, you may want to handle all of them together in a SpecDatabase. You can add them to the
existing database with the add() method:

db = SpecDatabase(r'"path/to/database") # create or loads database
db.add(s)

Note that if using the RADIS LBL code to generate your spectra, the SpectrumFactory class has the
init_database() method that automatically retrieves a spectrum from a database if you calculated it already, or
calculates it and stores it if you didn’t. Very useful for spectra that requires long computational times!

32 Chapter 2. Content

RADIS Documentation, Release 0.13.1

Export to hdf5

This is the fastest way to dump a Spectrum object on disk (and also, it keeps metadata and therefore units !). Use
to_hdf50)

s.to_hdf5("'spec®1.h5")

Export to txt
Saving to .txt in general isn’t recommended as you will loose some information (for instance, the conditions). You
better use store () and export to . spec [a hidden . json] format.

If you really need to export a given spectral arrays to txt file (for use in another software, for instance), you can use the
savetxt () method that will export a given spectral arrays:

s.savetxt('radiance_W_cm2_sr_um.csv', 'radiance_noslit', wunit='nm', Iunit='W/cm2/sr/um")

Export to Pandas

Use to_pandas()

s.to_pandas()

This will return a DataFrame with all spectral arrays as columns.

Export to Specutils

Use to_specutils() to convert to a to specutils specutils.spectra.spectrumld.SpectrumlD object

s.to_specutils()

* Post-process using Specutils

2.3.5 How to modify a Spectrum object?
Calculate missing quantities

Some spectral arrays can be infered from quantities stored in the Spectrum if enough conditions are given. For instance,
transmittance can be recomputed from the spectral absorption coefficient if the path length is stored in the conditions.

The update () method can be used to do that. In the example below, we recompute transmittance from the absorption
coeflicient (opacity)

w, A are numpy arrays for wavenumber and absorption coefficient
s = Spectrum. from_array(w, A, 'abscoeff', wunit='cm-1")
s.update('transmittance_noslit')

All derivable quantities can be computed using .update('all") or simply .update():

s.update()

2.3. The Spectrum object 33

https://specutils.readthedocs.io/en/stable/api/specutils.Spectrum1D.html#specutils.Spectrum1D

RADIS Documentation, Release 0.13.1

Update Spectrum conditions

Spectrum conditions are stored in a conditions dictionary

Conditions can be updated a posteriori by modifying the dictionary:

s.conditions['path_length'] = 10 # cm

Rescale Spectrum with new path length

Path length can be changed after the spectra were calculated with the rescale_path_length() method. If the spec-
trum is not optically thin, this requires solving the radiative transfer equation again, so the emisscoeff and abscoeff
(opacity) quantities will have to be stored in the Spectrum, or any equivalent combination (radiance_noslit and ab-
sorbance, for instance).

Example:

from radis import load_spec
s = load_spec('co_calculation.spec')
s.rescale_path_length(0.5) # calculate for new path_length

Rescale Spectrum with new mole fraction

Warning: Rescaling mole fractions neglects the changes in collisional broadening

mole fraction can also be changed in post-processing, using the rescale_mole_fraction() method that works simi-
larly to the rescale_path_length() method. However, the broadening coefficients are left unchanged, which is valid
for small mole fraction changes. However, for large mole fraction changes you will have to recalculate the spectrum
from scratch.

>>> s.rescale_mole_fraction(0.02) # calculate for new mole fraction

Apply instrumental slit function

Use apply_slit():

s.apply_slit(1.5) # nm

By default, convoluted spectra are thinner than non-convoluted spectra, to remove side effects. Use the mode= argument
to change this behavior.

* Line Survey
* GPU Accelerated Spectra
* Calculate non-LTE spectra of carbon-monoxide

* Calculate a spectrum from ExoMol

34 Chapter 2. Content

RADIS Documentation, Release 0.13.1

Plot the slit function that was applied

Use plot_slit(). You can also change the unit:

s.apply_slit(0.5, 'cm-1") # for instance
s.plot_slit('nm")

Multiply, subtract
Sometimes you need to manipulate an experimental spectrum, to account for calibration or remove a baseline. Spectrum
operations are done just for that:

* add_constant()

e add_array()

¢ add_spectra()

e substract_spectra()

Most of these functions are implemented with the standard operators. Ex:

((s_exp - 0.1)*10).plot() # works for a Spectrum s_exp

Note that these operators are purely algebraic and should not be used in place of the line-of-sight functions, i.e,
SerialSlabs() (>) and MergeSlabs() (//)

Most of these functions will only work if there is only one spectral arrays defined in the Spectrum. If there is any
ambiguity, use the take () method. For instance, the following line is a valid RADIS command to plot the spectral
radiance of a spectrum with a low resolution:

(10%(s.apply_slit(10, 'nm')).take('radiance')).plot()

Algebraic operations also work with dimensioned Quantity. For instance, remove a constant baseline in a given unit:

s =0.1 * u.Unit('W/cm2/sr/nm")

The max () function returns a dimensionned value, therefore it can be used to normalize a spectrum directly :

s /= s.max()

Or below, we calibrate a Spectrum, assuming the spectrum units is in “count”, and that our calibration show we have
94 mW/em2/sr/nm per count.

s *= 94 * u.Unit("mW/cm2/sr/mm") / u.Unit("count")

Offset, crop

Use the associated functions: crop(), offset().

They are also defined as methods of the Spectrum objects (see crop(), offset()), so they can be used directly with:

s.offset(3, 'nm')
s.crop(370, 380, 'nm')

By default, using methods that will modify the object in place, using the functions will generate a new Spectrum.

2.3. The Spectrum object 35

https://radis.readthedocs.io/en/latest/spectrum/spectrum.html#spectral-quantities
https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity

RADIS Documentation, Release 0.13.1

e Load an experimental spectrum

Normalize

Use normalize () directly, if your spectrum only has one spectral arrays

s.normalize()
s.normalize(normalize_how="max")
s.normalize(normalize_how="area')

You can also normalize only on limited range. Useful for noisy spectra

s.normalize(wrange=(2250, 2500), wunit="cm-1", normalize_how="mean")

This returns a new spectrum and does not modify the Spectrum itself. To do so use:

s.normalize(inplace=True)

Chaining

You can chain the various methods of Spectrum. For instance:

s.normalize() .plot()

Or:

s.crop(4120, 4220, 'nm').apply_slit(3, 'nm').take('radiance')

If you want to create a new spectrum, don’t forget to set inplace=False for the first command that allows it. i.e

s2 = s.crop(4120, 4220, 'nm', inplace=False).apply_slit(3, 'nm').offset(1.5, 'nm')

Remove a baseline

Either use the add_constant () mentionned above, which is implemented with the - operator:

s2 =s - 0.1

Or remove a linear baseline with:
* get_baseline()
e sub_baseline()

You could also use the functions available in pyspecutils, see to_specutils().

36 Chapter 2. Content

RADIS Documentation, Release 0.13.1

Calculate transmittance from radiance with Kirchoff’s law

RADIS can be used to infer spectral arrays from others if they can be derived. If on top that, equilibrium is assumed,
then Kirchoff’s law is used. See How to ... calculate missing quantities? and the update () method with
argument assume_equilibrium=True. Example:

s = calculated_spectrum(...) # defines 'radiance_noslit')
s.update('transmittance_noslit')
s.plot('transmittance_noslit"')

You can infer if a Spectrum is at (thermal) equilibrium with the is_at_equilibrium() method, that looks up the
declared spectrum conditions and ensures Tgas==Tvib==Trot. It does not imply chemical equilibrium (mole fractions
are still arbitrary)

2.3.6 How to handle multiple Spectra?
Build a line-of-sight profile

RADIS allows the combination of Spectra such as:

s_line_of_sight = (s_plasma_C02 // s_plasma_CO) > (s_room_absorption)

Refer to the line-of-sight module

Compare two Spectra

You can compare two Spectrum objects using the compare_with() method, or simply the == statement (which is
essentially the same thing):

sl == s2

>>> True/False
sl.compare_with(s2)
>>> True/False

However, compare_with() allows more freedom regarding what quantities to compare. == will compare everything
of two spectra, including input conditions, units under which spectral quantities are stored, populations of species if
they were saved, etc. In many situations, we may want to simply compare the spectra themselves, or even a particular
quantity like transmittance_noslit. Use:

sl.compare_with(s2, spectra_only=True) # compares all spectral arrays
sl.compare_with(s2, spectra_only='transmittance_noslit') # compares transmittance only

The aforementionned methods will return a boolean array (True/False). If you need the difference, or ratio, or dis-
tance, between your two spectra, or simply want to plot the difference, you can use one of the predefined functions
get_diff(), get_ratio(), get_distance(), get_residual () or the plot function plot_diff():

from radis.spectrum import plot_diff
sl = load_spec(temp_file_name)

s2 = load_spec(temp_file_name2)
plot_diff(sl, s2, 'radiance')

2.3. The Spectrum object 37

https://radis.readthedocs.io/en/latest/los/index.html

RADIS Documentation, Release 0.13.1

These functions usually require that the spectra are calculated on the same spectral range. When comparing, let’s say,
a calculated spectrum with experimental data, you may want to interpolate: you can have a look at the resample ()
method. See Interpolate a Spectrum on another for details.

In plot_diff(), you can choose to plot the absolute difference (method="diff"), or the ratio (method="ratio"),
or both:

Below we compare 2 CO2 spectra s_cdsd and s_hitemp previously calculated with two.
—different line databases.

from radis import plot_diff

plot_diff(s_cdsd, s_hitemp, method=['diff', 'ratio'])

Plot in log scale

If you wish to plot in a logscale, it can be done in the following way::

fig, [ax0®, axl] = plot_diff(s_expe, s_test, normalize=False, verbose=False)
ylim® = ax0.get_ybound()

ax0.set_yscale("log™")

ax0.set_ybound(ylim®)

Fit an experimental spectrum
RADIS does not include fitting algorithms. To fit an experimental spectrum, one should use one of the widely available
optimization algorithms from the Python ecosystem, for instance scipy.optimize.minimize().

The get_residual() and get_residual_integral() functions can be used to return a scalar to feed to the
minimize () function.

A simple fitting procedure could be:

from scipy.optimize import minimize
from radis import calc_spectrum, experimental_spectrum

s_exp = experimental_spectrum(...)

def cost_function(T):
calc_spectrum(Tgas=T,
. # other parameters)
return get_residual(s_exp, s)

best = minimize(cost_function,
800, # initial value
bounds=[500, 2000],

)
T_best = best.x

Note however that the performances of a fitting procedure can be vastly improved by not reloading the line database
every time. In that case, it becomes interesting to use the SpectrumFactory class.

An example of a script that uses the SpectrumFactory, multiple fitting parameters, and plots the residual and the
calculated spectrum in real-time, can be found in the Examples page

38 Chapter 2. Content

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize

RADIS Documentation, Release 0.13.1

Interpolate a Spectrum on another

Let’s interpolate a calculated spectrum on an experimental spectrum, using the resample() and, for instance, the
get_wavelength() method:

let's say we have two objects:

s_exp = load_spec('...")

s_calc = calc_spectrum(...)

resample:
s_calc.resample(s_exp.get_wavelength(), 'nm')

Energy conservation is ensured and an error is raised if your interpolation is too bad. If you need to adjust the error
threshold, see the parameters in resample().

Create a database of Spectrum objects
Use the SpecDatabase class. It takes a folder as an argument, and converts it in a list of Spectrum objects. Then,
you can:

* see the properties of all spectra within this folder with see ()

* select the Spectrum that match a given set of conditions with get (), get_unique() and get_closest()

* fit an experimental spectrum against all precomputed spectra in the folder with fit_spectrum()

See more information about databases below.

2.3.7 Spectrum Database
Spectrum objects can be stored/loaded to/from .spec JSON files using the store() method and the load_spec()
function.

* Spectrum Database

It is also possible to set up a SpecDatabase which reads all .spec files in a folder. The SpecDatabase can then be
connected to a SpectrumFactory so that spectra already in the database are not recomputed, and that new calculated
spectra are stored in the folder

Example:

db = SpecDatabase(r"path/to/database") # create or loads database

db.update() # in case something changed
db.see(['Tvib', 'Trot'l]l) # nice print in console

s = db.get('Tvib==3000")[0] # get a Spectrum back
db.add(s) # update database (and raise error because duplicate!)

A SpecDatabase can also be used to compare the physical and computation parameters of all spectra in a folder.
Indeed, whenever the database is loaded, a summary . csv file is generated that contains all conditions and can be read,
for instance, with Excel.

Example:

from radis import SpecDatabase

SpecDatabase(r".") # this generates a .csv file in the current folder

2.3. The Spectrum object 39

RADIS Documentation, Release 0.13.1

The examples below show some actions that can be performed on a database:

Iterate over all Spectra in a database

Both methods below are equivalent. Directly iterating over the database:

db = SpecDatabase('.")
for s in db:
print(s.name)

Or using the get () method with no filtering condition:

db = SpecDatabase('.")
for s in db.get(Q):
print(s.name)

You can also use dictionary-like methods: keys(), values() and items() where Spectrum are returned under a
{path:Spectrum} dictionary.

Filter spectra that match certain conditions

If you want to get Spectra in your database that match certain conditions (e.g: a particular temperature), you may want
to have a look at the get (), get_unique() and get_closest () methods

Fit an experimental spectrum against precomputed spectra

The fit_spectrum() method of SpecDatabase can be used to return the spectrum of the database that matches the
best an experimental spectrum:

s_exp = experimental_spectrum(...)
db = SpecDatabase('...")
db. fit_spectrum(s_exp)

By default fit_spectrum() uses the get_residual () function. You can use an customized function too (below: to
get the transmittance):

from radis import get_residual
db.fit_spectrum(s_exp, get_residual=lambda s_exp, s: get_residual(s_exp, s, var=
< "transmittance'))

You don’t necessarily need to precompute spectra to fit an experimental spectrum. You can find an example of multi
temperature fitting script in the Example pages, which shows the evolution of the spectra in real-time. You can get
inspiration from there!

40 Chapter 2. Content

RADIS Documentation, Release 0.13.1

Updating a database

Update all spectra in current folder with a new condition (‘author’), making use of the items () method:

from radis import SpecDatabase

db = SpecDatabase('.")

for path, s in db.items():
s.conditions['author'] = 'me
s.store(path, if_exists_then='replace')

v

You may also be interested in the map () method.

When not to use a Database

If you simply want to store and reload one Spectrum object, no need to use a database: you better use the store()
method and load_spec() function.

Databases prove useful only when you want to filter precomputed Spectra based on certain conditions.

2.4 Line-of-sight module

This module takes several Spectrum objects as an input and combines then along the line-of-sight (SerialSlabs())
or at the same spatial position (MergeSlabs()), to reproduce line-of-sight experiments

2.4.1 How to combine slabs?
Along the line-of-sight

Use the SerialSlabs () function:

sl = calc_spectrum(...)
s2 calc_spectrum(...)
s3 SerialSlabs(sl, s2)

You can also use the > operator. The previous line is equivalent to:

s3 = sl > s2

At the same spatial position

Use the MergeSlabs () function:

Merge two spectra calculated with different species (true only if broadening coefficient dont change much):

from radis import calc_spectrum, MergeSlabs
sl = calc_spectrum(...)
s2 calc_spectrum(...)
s3 = MergeSlabs(sl, s2)

You can also use the // operator. The previous line is equivalent to:

2.4. Line-of-sight module 41

RADIS Documentation, Release 0.13.1

s3 =sl1 // s2

* Calculate a large spectrum by part

2.4.2 Practical Examples

Below are some practical examples of the use of the Line-of-sight module:

Build a large spectrum

If you want to calculate a spectrum on a very large spectral range which cannot be handled in memory at once, you
can calculate partial, non-overlapping spectral ranges and use MergeSlabs() to combine them. In that case, we tell
MergeSlabs() to use the full spectral range and that the partial spectra are transparent outside of their definition range:

from radis import load_spec, MergeSlabs

spectra = []

for f in ['specl.spec', 'spec2.spec', ...]: # precomputed spectra
spectra.append(load_spec(f))

s = MergeSlabs(*spectra, resample='full', out='transparent')

s.plot()

Get the contribution of each slab along the LOS

Let’s say you have a total line of sight:

s_los = sl > s2 > s3

If you want to get the contribution of s2 to the line-of-sight emission, you need to discard the emission of s3 but take
into account its absorption. This is done using the PerfectAbsorber () function, which returns a new Spectrum with
all the emission features set to 0:

from radis import PerfectAbsorber
(s2 > PerfectAbsorber(s3)).plot('radiance_noslit')

And the contribution of s1 would be:

(sl > PerfectAbsorber(s2>s3)).plot('radiance_noslit"')

2.5 Examples

Many other examples scripts are available on the radis-examples project.

42 Chapter 2. Content

https://github.com/radis/radis-examples

RADIS Documentation, Release 0.13.1

2.5.1 Line Survey

Example of output produced by the LineSurvey tool:

from radis import SpectrumFactory

sf = SpectrumFactory(
wavenum_min=2380,
wavenum_max=2400,
mole_fraction=400e-6,
path_length=100, # cm
isotope=[1],
)

sf.load_databank ('HITRAN-CO2-TEST"')

s = sf.eq_spectrum(Tgas=1500)

s.apply_slit(0.5)

s.line_survey(overlay="'radiance_noslit', barwidth=0.01)

The graph is a html file that can be shared easily even to non-Python users.

2.5.2 RADIS in-the-browser

RADIS in-the-browser sessions can be run from the RADIS examples project. No installation needed, you don’t even
need Python on your computer.

For example, run the Quick Start first example by clicking on the link below:

Or start a bare RADIS online session:

The full list can be found on the RADIS Interactive Examples project.

2.5.3 Get rovibrational energies

RADIS can simply be used to calculate the rovibrational energies of molecules, using the built-in spectroscopic con-
stants. See the getMolecule() function, and the Molecules list containing all ElectronicState objects.

Here we get the energy of the asymmetric mode of CO2:

from radis import getMolecule
C02 = getMolecule('CO2', 1, 'X")
print(CO2.Erovib(0®, 0, 0, 1, 0))
>>> 2324.2199999

Here we get the energy of the v=6, J=3 level of the 2nd isotope of CO:

CO = getMolecule('CO', 2, 'X")
print(CO.Erovib(6, 3))
>>> 12218.8130906978

2.5. Examples 43

https://github.com/radis/radis-examples
https://mybinder.org/v2/gh/radis/radis-examples/master?filep